
Software Code Quality Measurement: Implications fromMetric
Distributions

Si Yuan Jin1,2, Ziyuan Li3,1,∗, Bichao Chen1,∗, Bing Zhu1,∗, and Yong Xia1,∗

Presenter: Bruce Si Yuan Jin
1 HSBC Laboratory, Guangzhou, China
2 School of Business and Management, Hong Kong University of Science and Technology, Hong Kong, China
3 School of Physics, Sun Yat-sen University, Guangzhou, China
Acknowledgment: Y. Xia is partly supported by the ”Pioneering Innovator” award from the Guangzhou Tianhe District government.
Z. Li is partly supported by the Guangdong Basic and Applied Basic Research Foundation (2021A1515012039). We would like to
acknowledge useful discussions and support from our colleagues at the HSBC Lab.

December 17, 2023

Background

• The initial definition on code quality is the collective features of software that meet given
needs (Fitzpatrick, 1996).

• Precise code quality measurement can improve software products, increase user
satisfaction, and save costs of IT systems (Kekre et al., 1995), which influences the success
and adoption of software (Levine and Toffel, 2010).

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 2

Foreground

• Code quality has dimensions (Polites et al., 2012). ISO/IEC 25010 standard (Klima et al., 2022):
maintainability (Motogna et al., 2023), readability (González-Prieto et al., 2023), and
functionality (Shen et al., 2020).

• Code quality is amulti-dimensional construct (Edwards, 2001):

Construct Definition Dimensions Definition

Code Quality
How well-written the code
is, including maintainability,
reliability, and functionality.
(Lee et al., 2009)

Maintainability The code is easy to understand, enhance, or
correct. (Deligiannis et al., 2003)

Reliability The code is user-friendly and stable. (Lee et al.,
2009)

Functionality The code has useful functions. (Lee et al., 2009)

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 3

Foreground

• 20 distinct metric measurements from
literature.

• Two types: Monotonic metrics and
non-monotonic metrics.

0 . 0 0
0 . 0 5
0 . 1 0
0 . 1 5

0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8

0 . 0 0

0 . 0 5

0 . 1 0

0 . 0 0 . 1 0 . 2 0 . 3 0 . 4 0 . 50 . 0 0

0 . 0 5

0 . 1 0

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4
0 . 5

0 . 0
0 . 1
0 . 2
0 . 3

0 . 0
0 . 1
0 . 2
0 . 3
0 . 4

0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 00 . 0
0 . 1
0 . 2
0 . 3
0 . 4

 j a v a

 j a v a s c r i p t

 p y t h o nDe
nsi

ty

 t y p e s c r i p t

A v e r a g e C y c l o m a t i c C o m p l e x i t y D u p l i c a t e d L i n e s p e r 1 0 0 0 L i n e s

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 4

Research Question

• No uniform solution: The literature lacks methodologies for evaluating code quality metrics,
especially for non-monotonic metrics.

• Research Question: How to propose a consistent method to evaluate them?

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 5

Theoretical Relevance

• Code quality’s metric measurements (Bianchi et al., 2012): the size of components (Stamelos
et al., 2002), code complexity (McCabe, 1976; Shin et al., 2010).

• However, existing metric identifications have focused onmonotonic areas rather than
non-monotonic metrics.

• Our paper considers both and proposes a uniform solution for them.

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 6

Pracitical Relevance

• Many firms utilize and contribute to OSS (Mehra et al., 2011) and developers reuse OSS to
lower their search cost (Haefliger et al., 2008), which requires high code quality.

• Performance evaluations for software:
• Inappropriate performance measurements - a major cause of IT systems failing (Kekre et al.,

1995; Fitoussi and Gurbaxani, 2012).
• As new technologies and techniques emerge (Jin and Xia, 2022), more precise measurements of

software quality and fit are needed.

• We study OSS because of their high code quality (Ljungberg, 2000; Von Krogh and Von Hippel,
2006).

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 7

Metric Identification

We normalized metrics based on the number of functions, lines, and classes.

Dimension Metric Definition

Maintainability

Cyclomatic Complexity Number of independent paths through code.
File Complexity Cyclomatic complexity averaged by files.
Cognitive Complexity Combination of cyclomatic complexity and human assessment.
Code Smells Number of code smell issues.
Coupling Between Objects Number of classes that are coupled to a particular class.
Fan-in Number of input dependencies a class has.
Fan-out Number of output dependencies a class has.
Depth Inheritance Tree Number of ”fathers” a class has.
Number of Children Number of immediate subclasses that a particular class has.
Lack of Cohesion of Methods Degree to which class methods are coupled.
Tight Class Cohesion Ratio of the number of pairs of directly related methods in a class to the maximum number of possible methods in the class.
Loose Class Cohesion Ratio of the number of directly or indirectly related method pairs in a class to the maximum number of possible method pairs.

Reliability
Total Violations Number of issues including all severity levels.
Critical Violations Number of issues of the critical severity.
Info Violations Number of issues of the info severity.

Functionality

Line to Cover Lines to be covered by unit tests.
Comment Lines Number of comment lines.
Duplicated Blocks Number of duplicated blocks of line.
Duplicated Files Number of files involved in duplicated blocks.
Duplicated Lines Number of lines involved in duplicated blocks.

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 8

Distribution-based Evaluation

• Distribution fitting of each metric in high-star OSS repositories.

• Score them according to their locations in the distributions.

• Overall score: weights to individual scores. for the overall score for repository k:

Qoverall
k =

∑
i

ωi · Qmetric
i,k , subject to:

∑
i

ωi = 1. (1)

• The weights ωi can be obtained from calculating the importance of scores to a code quality
reflective measurement, such as the number of GitHub stars Medappa and Srivastava (2019).

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 9

Monotonic Metrics

We fit an exponential distribution to the monotonic-metric data.

f1(x; c, λ) =

{
0 if x ≤ c

λ exp [−λ(x− c)] if x > c
(2)

where λ and c are the fitting parameters. The corresponding score function based on the CDF of
Eq. (2) reads as

M1(x; c, λ) = 100×

{
1 if x ≤ c

exp [−λ(x− c)] if x > c
(3)

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 10

Non-monotonic Metrics

The non-monotonic metrics follow an asymmetric Gaussian distribution, the PDF of which reads as

f2(x;µ, σ1, σ2) =
1√
2π

2
σ1+σ2

exp
(
− (x−µ)2

2σ2
1

)
if 0 ≤ x < µ

1√
2π

2
σ1+σ2

exp
(
− (x−µ)2

2σ2
2

)
if x ≥ µ

(4)

where µ, c, σ1, σ2 represent the peak position, peak height on the right, and peak widths on each
side, respectively. The corresponding score function is

M2(x, µ, σ1, σ2) =

100×

1− erf
(

x−µ

σ1

√
2

)
if 0 ≤ x < µ

1− erf
(

x−µ

σ2

√
2

)
if x ≥ µ

(5)

where the score falls into the range of 0 ∼ 100, peaks at µ, and decays according to the Z-score
of the Gaussian function on each side.
Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 11

Data

• The top∼ 20, 000 repositories for each programming language.

• Exclusion: non-engineering repositories, such as a guide for Java interviews in JavaGuide.

• Metrics Data: We used code scanners to obtain metrics. Scripting language (Python,
Javascript, TypeScript) repositories can be directly imported, while non-scripting Java
repositories need to be compiled first.

• Therefore, we only chose repositories with GitHub releases for compilation, which led to
36,460 repositories and over 600 million lines of code.

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 12

https://github.com/Snailclimb/JavaGuide

Distribution Fitting - Monotonic Metrics

• Higher-tolerance: The threshold parameter c for ’Code Smells’ in Java approximates 1.
• Low-sensitive Metrics: λ ≲ 1 is observed for metrics such as ’File Complexity’, ’Depth

Inheritance Tree’, ’Number of Children’, ’Duplicated Blocks’, and ’Duplicated Files’.
• High-sensitive Metrics: Total violation, Code Smells.

Metric Java(c,λ) JavaScript(c,λ) Python(c,λ) TypeScript(c,λ)

File Complexity (0,0.485) (0,0.884) (0,0.917) (0,0.492)
Code Smells (1.123,50.731) (0.036,60.260) (0.004,37.177) (0.017,16.530)

Depth Inheritance Tree (1.003,0.502) / / /
Number of Children (0.002,0.137) / / /

Lack of Cohesion of Methods (0.053,80.004) / / /
Total Violations (1.160,54.376) (0.054,63.313) (0.004,387.551177) (0.021,18.168)
Critical Violations (0.019,9.872) (0.020,48.811) (0.007,9.443) (0.005,5.497)
Info Violations (0.019,1.934) (0.001,1.436) (0.002,1.401) (0.003,1.535)
Line to Cover (0,0.000) (0,0.000) (0,0.000) (0,0.000)

Duplicated Blocks (0,0.015) (0.001,0.021) (0,0.010) (0,0.021)
Duplicated Files (0.003,0.135) (0.001,0.203) (0,0.222) (0,0.116)
Duplicated Lines (0.439,63.284) (0.145,163.258) (0.081,124.342) (0.085, 102.796)

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 13

Distribution Fitting - Non-monotonic Metrics

• ”Comment lines” for Javascript and Typescript are almost monotonic (µ = 0), potentially
because they are generally easy to understand.

• Asymmetric Sensitivity: For ’Comment lines’ (Python), the sensitivity is large (small) before
(after) the central point.

Metric Java(µ,σ1,σ2) JavaScript(µ,σ1,σ2) Python(µ,σ1,σ2) TypeScript(µ,σ1,σ2)

Cyclomatic Complexity (155.228,50.947,40.902) (166.692,88.415,78.289) (162.321,53.497,52.789) (127.273,51.616,66.733)
Cognitive Complexity (50.870,40.120,75.664) (33.238,32.586,121.541) (170.042,33.546,0.000) (29.619,22.964,81.617)

Comment Lines (15.841,11.451,137.269) (0.007,6.575,96.312) (91.730,64.805,148.192) (0.002,9.300,72.443)
Fan-in (1.101,0.463,1.217) / / /
Fan-out (5.181,2.043,4.639) / / /

Loose Class Cohesion (0.329,0.149,0.176) / / /
Tight Class Cohesion (0.228,0.100,0.128) / / /

Coupling Between Objects (7.055,2.580,5.086) / / /

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 14

Importance Weights - Reliability

• Reliability: ’Total Violations’ contributes mostly to Java, while the ’Critical Violations’ is the
most important for the other three languages.

• Priority: mitigating all violations for Java repositories; mitigating critical violations for other
three languages.

Dimension Metric
Importance

Java JavaScript Python TypeScript

Reliability
Total Violations 0.474 (0.056) 0.288 (0.070) 0.293 (0.068) 0.228 (0.065)
Critical Violations 0.272 (0.032) 0.420 (0.102) 0.410 (0.095) 0.414(0.118)
Info Violations 0.254 (0.030) 0.292 (0.071) 0.297 (0.069) 0.358 (0.102)
Sum 1 (0.118) 1 (0.243) 1 (0.232) 1 (0.285)

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 15

Importance Weights - Functionality

• Functionality: the ’Comment Lines’ metric score explains the most for Java adoption,
implying its influential role in adopting Java OSS repositories.

• Java might be less intuitive to understand, thereby making code comments essential for
understanding Java codes.

Dimension Metric
Importance

Java JavaScript Python TypeScript

Functionality

Line to Cover 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Comment Lines 0.454 (0.059) 0.317 (0.103) 0.370 (0.107) 0.318 (0.112)
Duplicated Blocks 0.162 (0.021) 0.286 (0.093) 0.197 (0.057) 0.148 (0.052)
Duplicated Files 0.190 (0.025) 0.120 (0.039) 0.166 (0.048) 0.179 (0.063)
Duplicated Lines 0.194 (0.025) 0.277 (0.090) 0.267 (0.077) 0.355 (0.125)
Sum 1 (0.130) 1 (0.325) 1 (0.289) 1 (0.352)

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 16

Model Workflow Summary and Explainability

Metrics
Extraction

Filter

Metrics
Importance

Weighting

Code Quality
Score

Maintainability

Reliability

Functionality

Github
Repositories

Metrics Scanner

Training Data
& Test Data

New Data

Maintainability

Reliability

Functionality

Scoring

Scoring

Metrics
Score

Raw Metrics
Data

Scoring

Updating

Github Star

Classification

Language Java JavaScript Python TypeScript

Accuracy 0.947 0.826 0.808 0.817
Precision 0.971 0.838 0.831 0.834
Recall 0.917 0.803 0.771 0.784
F1 0.943 0.820 0.800 0.808

AUC_ROC 0.946 0.826 0.815 0.817
R2 0.787 0.274 0.186 0.247

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 17

Conclusion

• Code quality with three dimensions: maintainability, reliability, and functionality.

• We evaluate metrics based on their distributions.

• Contribution: Our study advances the understanding of code quality and contributes to
better quality control standards and practices, ultimately supporting the OSS success.

• Limitations:
• Not yet systematically validated the effectiveness of our method.
• Parameters of fitted distributions are sensitive to data distribution, making it necessary to

incorporate more data for determining them.

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 18

Comments welcome!

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 19

References
Bianchi, A. J., Kang, S. M., and Stewart, D. (2012). The Organizational Selection of Status Characteristics: Status Evaluations in an Open Source Community. Organization Science,

23(2):341–354.
Deligiannis, I., Shepperd, M., Roumeliotis, M., and Stamelos, I. (2003). An empirical investigation of an object-oriented design heuristic for maintainability. Journal of Systems and

Software, 65(2):127–139.
Edwards, J. R. (2001). Multidimensional constructs in organizational behavior research: An integrative analytical framework. Organizational research methods, 4(2):144–192.
Fitoussi, D. and Gurbaxani, V. (2012). It outsourcing contracts and performance measurement. Information Systems Research, 23(1):129–143.
Fitzpatrick, R. (1996). Software quality: definitions and strategic issues. Report, 1.
González-Prieto, Á., Perez, J., Diaz, J., and López-Fernández, D. (2023). Reliability in software engineering qualitative research through inter-coder agreement. Journal of Systems

and Software, 202:111707.
Haefliger, S., Von Krogh, G., and Spaeth, S. (2008). Code reuse in open source software. Management science, 54(1):180–193.
Jin, S. Y. and Xia, Y. (2022). Cev framework: A central bank digital currency evaluation and verification framework with a focus on consensus algorithms and operating architectures.

IEEE Access, 10:63698–63714.
Kekre, S., Krishnan, M. S., and Srinivasan, K. (1995). Drivers of customer satisfaction for software products: implications for design and service support. Management science,

41(9):1456–1470.
Klima, M., Bures, M., Frajtak, K., Rechtberger, V., Trnka, M., Bellekens, X., Cerny, T., and Ahmed, B. S. (2022). Selected code-quality characteristics and metrics for internet of things

systems. IEEE Access, 10:46144–46161.
Lee, S.-Y. T., Kim, H.-W., and Gupta, S. (2009). Measuring open source software success. Omega, 37(2):426–438.
Levine, D. I. and Toffel, M. W. (2010). Quality management and job quality: How the iso 9001 standard for quality management systems affects employees and employers.

Management Science, 56(6):978–996.
Ljungberg, J. (2000). Open source movements as a model for organising. European Journal of Information Systems, 9(4):208–216.
McCabe, T. J. (1976). A complexity measure. IEEE Transactions on software Engineering, 0(4):308–320.
Medappa, P. K. and Srivastava, S. C. (2019). Does superposition influence the success of floss projects? an examination of open-source software development by organizations and

individuals. Information Systems Research, 30(3):764–786.
Mehra, A., Dewan, R., and Freimer, M. (2011). Firms as incubators of open-source software. Information Systems Research, 22(1):22–38.
Motogna, S., Vescan, A., and Şerban, C. (2023). Empirical investigation in embedded systems: Quality attributes in general, maintainability in particular. Journal of Systems and

Software, 201:111678.
Polites, G. L., Roberts, N., and Thatcher, J. (2012). Conceptualizing models using multidimensional constructs: a review and guidelines for their use. European Journal of Information

Systems, 21:22–48.
Shen, Q., Wu, S., Zou, Y., Zhu, Z., and Xie, B. (2020). From api to nli: A new interface for library reuse. Journal of Systems and Software, 169:110728.
Shin, Y., Meneely, A., Williams, L., and Osborne, J. A. (2010). Evaluating complexity, code churn, and developer activity metrics as indicators of software vulnerabilities. IEEE

transactions on software engineering, 37(6):772–787.
Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L. (2002). Code quality analysis in open source software development. Information Systems Journal, 12(1):43–60.
Von Krogh, G. and Von Hippel, E. (2006). The promise of research on open source software. Management science, 52(7):975–983.

Jin et. al Software Code Quality Measurement: Implications from Metric Distributions 20

	Introduction
	Literature
	Methodology
	Application
	References

