
Software Code Quality Measurement: Implications from Metric Distributions

Siyuan Jin1,2, Ziyuan Li3,1,∗, Bichao Chen1,∗, Bing Zhu1,∗, and Yong Xia1,∗
1 HSBC Laboratory, Guangzhou, China

2 Department of Information Systems, Business Statistics and Operations Management,
Hong Kong University of Science and Technology, Hong Kong, China

3 School of Physics, Sun Yat-sen University, Guangzhou, China
siyuan.jin@connect.ust.hk, liziyuan3@mail.sysu.edu.cn, bichao.chen@hsbc.com, bing1.zhu@hsbc.com, yong.xia@hsbc.com

*Corresponding Author

Abstract—Software code quality is a construct with three
dimensions: maintainability, reliability, and functionality. Al-
though many firms have incorporated code quality metrics in
their operations, evaluating these metrics still lacks consistent
standards. We categorized distinct metrics into two types: 1)
monotonic metrics that consistently influence code quality; and
2) non-monotonic metrics that lack a consistent relationship
with code quality. To consistently evaluate them, we proposed
a distribution-based method to get metric scores. Our empirical
analysis includes 36,460 high-quality open-source software
(OSS) repositories and their raw metrics from SonarQube1 and
CK2. The evaluated scores demonstrate great explainability
on software adoption. Our work contributes to the multi-
dimensional construct of code quality and its metric mea-
surements, which provides practical implications for consistent
measurements on both monotonic and non-monotonic metrics.

Keywords–open source software, code quality, construct mea-
surement, non-monotonic metric

1. INTRODUCTION

Code quality refers to the extent to which code is well-written
and meets given needs [1]. Precise code quality measurement
can improve software products, increase user satisfaction, and
save costs of IT systems [2], which influences the software
adoption [3, 4]. Therefore, numerous firms have incorporated
measurements to evaluate code quality. However, these meth-
ods display a wide range of diversity and lack consistent
standards.

Figure 1 shows that code quality is a multi-dimensional
construct that includes dimensions: maintainability, reliability,
and functionality [1]. Based on the literature on code quality
dimension measurements, we identified 20 distinct metrics
and divided them into monotonic and non-monotonic metrics.
Monotonic metrics consistently impact code quality, while
non-monotonic metrics lack a consistent relationship with
code quality (Figure 2). Most monotonic metrics exhibit a
monotonically decreasing relationship with code quality. A
case in point is the number of code smells, which, when it

1https://www.sonarsource.com
2https://github.com/mauricioaniche/ck

rises, usually denotes a corresponding decline in the overall
code quality.

The literature remains a gap in the methodologies for con-
sistently evaluating both types of code quality metrics, espe-
cially non-monotonic metrics. Therefore, the most prevalent
method for assessing code quality within firms continues to be
peer code review [5]. To consistently evaluate both types of
code quality metrics, we propose a distribution-based method,
which shows great explainability on software adoption.

Research Question 1

How to consistently evaluate both monotonic and non-
monotonic metrics for software code quality?

We evaluated metric scores by analyzing their probability dis-
tributions among high-star OSS. For monotonic metrics, we fit
an exponential distribution and use the weighted distance from
threshold parameters in their cumulative distribution functions
(CDFs) as their scores. For non-monotonic metrics, we fit
an asymmetric Gaussian distribution and use the weighted
distance away from the central point in their CDFs as their
scores. The evaluated scores range from 0 ∼ 100 for each
metric.

We conducted our empirical analysis on 36,460 GitHub OSS
repositories. The selection of repositories with a high number
of stars results in a more rigorous evaluation as those higher-
quality repositories are used as reference points. The reposi-
tories that are slightly worse than our selected ones typically
receive extremely low scores due to our sharper distributions
from high-quality repositories.

Research Question 2

What are the implications of the evaluated scores on
software adoption?

We investigated the explainability of our code quality metric
scores on OSS stars. The number of stars reflects OSS quality
and adoption [6]. With standard machine learning approaches,
we use R-squared (R2) and accuracy as measures to assess
their explanatory power. The results show our code quality
scores can explain the number of OSS stars well. Our method-

488

2023 IEEE 23rd International Conference on Software Quality, Reliability, and Security (QRS)

2693-9177/23/$31.00 ©2023 IEEE
DOI 10.1109/QRS60937.2023.00054

+Code Quality Adoption

Maintainability

Reliability

Functionality

Dimensions

Figure 1: Multi-Dimensional Construct

ology can be applied to different target variables, providing a
flexible strategy in various contexts.

This work has the following contributions. Prior literature
has discussed diverse code quality metrics [7, 8, 9] without
consistent metric evaluations. We extended them by dividing
code quality metrics into two types and evaluated them with a
novel distribution-based method. We conducted our empirical
analysis on 36,460 GitHub OSS repositories. We used our
evaluated scores to explain the OSS adoption [1], generating
implications into how code quality may influence the OSS
adoption. Our study advances the understanding of code
quality with two different types of code quality metrics and
contributes to better quality control standards and practices.

2. LITERATURE REVIEW

Open Source Software (OSS) uses a communal approach to
software development, which significantly increases their code
quality [10, 11] and fuels innovation [12, 13, 14]. Many firms
and developers actively contribute to and utilize OSS [15].
These contributions serve to incrementally enhance the overall
OSS code quality. The reuse of OSS has been widely adopted
because many OSS have high code quality [16] which can
effectively reduce the search costs for developers [17, 18].
Therefore, we use OSS as the benchmark to evaluate software
code quality.

Many research studied performance evaluations for software
[19]. Inappropriate performance measurements have been
identified as a major cause of IT systems failing [2, 20]. As
new technologies and techniques emerge, such as blockchain
systems [21], and AI agent systems [22], more precise mea-
surements of software code quality are needed [23]. Our
approach sets itself apart from past studies by considering the
distribution of high-quality software and delivering accurate
scores for each software.

Code quality encompasses various dimensions [24]. The IEEE
standard defines code quality as the collective features and
characteristics of software that meet given needs [25]. Later
on, user-friendliness and useful functionalities are included in
the definition of code quality [1], echoing the three dimen-
sions in the ISO/IEC 25010 standard [26]: maintainability,
reliability, and functionality [27]. Similarly, other studies have

similar dimensions: maintainability [28], readability [29], and
functionality [30]. We base on the literature to define the
construct and dimensions in Table I.

Code quality has metrics, including the size of components [8],
code complexity [7, 9], and so on. However, most existing
metric identifications have focused on monotonic metrics
rather than non-monotonic metrics, because monotonic metrics
have a consistent relationship with software code quality. Our
paper considers both types and proposes a uniform solution
for evaluating them.

Reflective measurements, such as the number of stars [6], can
indicate the overall level of software code quality. Although
OSS adoption activities are determined by many factors, such
as commitment [32], transparency [33], and leader resources
[34], OSS adoption decision can reflect good OSS code
quality. Lee et al. [1] highlight the impact of code quality
on user satisfaction and adoption. The OSS repositories that
see the highest adoption rate are often those that maintain
exceptional code quality. Therefore, we use GitHub stars as a
reflective measure of code quality.

3. METHODOLOGIES

Our study employs the number of stars as a reflective mea-
surement for identifying good-quality repositories. We divide
code quality metrics into two distinct groups. We then analyze
various code quality metric distributions and introduce a
consistent distribution-based approach to evaluate all metrics
within these categories.

We first map out the distribution of each metric in high-
star OSS repositories and then score them according to their
corresponding metric CDFs.

Table III presents two different types of metric distributions:
monotonic and non-monotonic metrics. We fit exponential
distributions to monotonic metrics, the probability distribution
function (PDF) of which reads as:

f1(x; c, λ) =


0 if x ≤ c

λ exp [−λ(x− c)] if x > c
(1)

where λ and c are the fitting parameters. The corresponding
score function based on the CDF of Eq. (1) reads as

M1(x; c, λ) = 100×

{
1 if x ≤ c

exp [−λ(x− c)] if x > c
(2)

The score falls into the range of 0 ∼ 100 and it peaks at c
and decays exponentially for x > c.

The non-monotonic metrics follow an asymmetric Gaussian
distribution (see the left of Fig. 2), the PDF of which reads as

f2(x;µ, σ1, σ2) =


1√
2π

2
σ1+σ2

exp

− (x−µ)2

2σ2
1


if 0 ≤ x < µ

1√
2π

2
σ1+σ2

exp

− (x−µ)2

2σ2
2


if x ≥ µ

(3)

489

TABLE I: Construct Definition

Construct Definition Dimensions Definition

Code Quality
The extent to which code is
well-written and meets given
needs. [1]

Maintainability The code is easy to understand, enhance, or correct. [31]
Reliability The code is user-friendly and stable. [1]
Functionality The code has useful functions. [1]

0.00

0.05

0.10

0.15

0.00

0.02

0.04

0.06

0.08

0.00

0.05

0.10

0.0 0.1 0.2 0.3 0.4 0.5
0.00

0.05

0.10

0.0
0.1
0.2
0.3
0.4
0.5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0 200 400 600 800 1000
0.0

0.1

0.2

0.3

0.4

java

javascript

python

D
en

si
ty

typescript

Average Cyclomatic Complexity Duplicated Lines per 1000 Lines
Figure 2: Examples of Non-Monotonic Metric Distribution and Monotonic Metric Distribution

where µ, c, σ1, σ2 are fitting parameters representing the peak
position, peak height on the right, and peak widths on each
side, respectively. The corresponding score function is

M2(x, µ, σ1, σ2) = 100×



1− erf


x−µ

σ1

√
2


if 0 ≤ x < µ

1− erf


x−µ

σ2

√
2


if x ≥ µ

(4)

where the score falls into the range of 0 ∼ 100, peaks at µ,
and decays according to the Z-score of the Gaussian function
on each side.

To obtain an overall score, we assign weights to individual
scores. The overall score for a given repository, denoted by k,
can be computed as follows:

Qoverall
k =


i

ωi ·Qmetric
i,k , subject to:


i

ωi = 1. (5)

The weights ωi are derived from the importance values from
supervised learning models for metric scores to a target
variable such as repository stars.

4. EMPIRICAL ANALYSIS

4.1 Data Sources

GitHub is the largest OSS management platform that has more
than 39 million public repositories (As of June 2023). We
selected a subset of repositories with Java, Python, JavaScript,
and TypeScript as the main programming languages and sorted
them by the number of stars. We collected code from the top
∼ 20, 000 repositories for each programming language. The
number of GitHub stars is a measure of OSS adoption [6].
We removed non-engineering repositories by pattern matching,
such as a guide for Java interviews in JavaGuide.

We used code scanners to obtain metrics. Scripting language

490

Metrics
Extraction

Filter

Metrics
Importance

Weighting

Code Quality
Score

Maintainability

Reliability

Functionality

Github
Repositories

Metrics Scanner

Training Data
& Test Data

New Data

Maintainability

Reliability

Functionality

Scoring

Scoring

Metrics
Score

Raw Metrics
Data

Scoring

Updating

Github Star

Classification

Figure 3: Workflow for Code Quality Scoring with GitHub Stars as the Target Variable

TABLE II: Statistical Summary

Programming Language Max Number of Stars Min Number of Stars Number of Filtered Repositories

Java 50k 100 1,645
Python 228k 260 16,096

JavaScript 107k 270 7,722
TypeScript 202k 60 10,997

repositories (Python, Javascript, TypeScript) can be directly
imported, while non-scripting Java repositories need to be
compiled first. Compiling Java repositories is challenging due
to their different JDK, maven, or Gradle versions. Therefore,
we only chose repositories with GitHub releases for compi-
lation, which led to 36,460 repositories and over 600 million
lines of code. Table II reports the statistics of the cloned
repositories. The minimum number of repository stars is above
50, which demonstrates good code quality compared to overall
OSS repositories.

4.2 Metrics Overview

We used SonarQube and CK to extract metrics from OSS
repositories. For Java repositories, we generated over 100 met-
rics and selected 20 based on the ISO/IEC 25010 international
standard [26]. For scripting language repositories, we only
extracted 12 metrics. Table III shows the 20 metrics with their
corresponding ISO/IEC 25010 characteristics.

We normalized metrics to ensure score fairness. Cyclomatic
complexity, cognitive complexity, code smells, line to cover,
and violations-related metrics are normalized by non-comment
lines of code, duplicated lines are normalized by lines of code,
and comment lines are normalized by the sum of non-comment
lines and comment lines, to account for repository size. File
complexity and duplicated files are normalized by the number
of files, and duplicated blocks are normalized by the number
of statements to adjust for differences across repositories. This
normalization process results in a more unbiased score for the
metrics across different OSS.

4.3 Importance Weights

We use standard machine-learning approaches to derive
weights for different metric scores and calculate a repository’s

overall code quality score. Our model can explain OSS adop-
tion (Github stars) using evaluated scores.

Figure 3 illustrates the entire process from data collection to
final scores. We use custom data filters to ensure genuine
engineering repositories are retained. We extract code quality
metrics using a metric scanner and generate metric scores
using the distribution-based method in Section 3, with each
programming language having its distribution for each metric.
We implement a Gradient Boosting Classifier (GBC) model
with 0-1 labels as dependent variables based on the number
of GitHub stars. We label the top and bottom quintiles (20%)
of the OSS repository stars as 1 and 0, respectively. The
model generates importance values as weights for each metric.
Finally, we obtain a weighted average code quality score
according to Eq. (5).

Algorithm 1: GBC in Our Context
Input: Training dataset D = {(mi, ci)}Ni=1, number of

iterations T
Output: Ensemble model F (m)
Initialize model F0(m) = 0;
for t = 1 to T do

Compute the negative gradient:

rit = − ∂L(ci,F (mi))
∂F (mi)

∣∣∣∣
F (m)=Ft−1(m)

;

Fit a base learner ht(m) to the negative gradient:
ht(m) = argminh

∑N
i=1 L(ci, Ft−1(mi) + h(mi));

Update the ensemble model: Ft(m) = Ft−1(m)+ ηht(m),
where η is the learning rate;

end

The GBC algorithm is presented in Algorithm 1, where each
data point contains a metric score mi and its corresponding
classification ci according to its GitHub star. We divide the

491

TABLE III: Definition of 20 Code Quality Metrics

Dimension Metric Definition

Maintainability

Cyclomatic Complexitya Number of independent paths through code.
File Complexityb Cyclomatic complexity averaged by files.
Cognitive Complexitya Combination of cyclomatic complexity and human assessment.
Code Smellsa Number of code smell issues.
Coupling Between Objects Number of classes coupled to a particular class.
Fan-in Number of input dependencies a class has.
Fan-out Number of output dependencies a class has.
Depth Inheritance Tree Number of ”fathers” a class has.
Number of Children Number of immediate subclasses that a particular class has.
Lack of Cohesion of Methods Degree to which class methods are coupled.
Tight Class Cohesion Ratio of the number of pairs of directly related methods in a class to the

maximum number of possible methods in the class.
Loose Class Cohesion Ratio of the number of directly or indirectly related method pairs in a class

to the maximum number of possible method pairs.

Reliability
Total Violationsa Number of issues including all severity levels.
Critical Violationsa Number of issues of the critical severity.
Info Violationsa Number of issues of the info severity.

Functionality

Line to Covera Lines to be covered by unit tests.
Comment Linesb Number of comment lines.
Duplicated Blockse Number of duplicated blocks of line.
Duplicated Filesd Number of files involved in duplicated blocks.
Duplicated Linesc Number of lines involved in duplicated blocks.

a Normalized by Non-comment Line of Codes.
b Normalized by Sum of Non-comment Line of Codes and Comment Lines.
c Normalized by Line of Codes.
d Normalized by Number of Files.
e Normalized by Number of Statements.

whole dataset into a training (D) and a validation set by a ratio
of 4:1. The GBC algorithm works with an ensemble model
F0(m) and we fine-tune it by fitting base learners ht(m)
to the loss function’s negative gradient. The learning rate η
determines the base learners’ contribution, resulting in the final
ensemble model F (m) providing the aggregate prediction.

5. RESULTS

5.1 Metric Distributions

We conducted our empirical analysis on 36,460 GitHub OSS
repositories. The selection of high-star repositories provides
a more critical evaluation, because they generally have better
performance, resulting in sharper distributions.

Table IV and Table V present the fitted parameters for the
asymmetric Gaussian [Eq. (3)] and Exponential [Eq. (1)]
distributions, respectively. Java repositories have 8 more main-
tainability metrics describing cohesion and coupling in the
codes, which are absent for other programming languages due
to a lack of proper metric scanners.

Monotonic metrics, such as ’Code Smells’, exhibit an ex-
ponential distribution pattern, as represented in Fig. 2 and
Table V. This distribution aligns with our understanding that
superior code quality is associated with fewer bugs, verifying

the effectiveness of our method. Furthermore, the threshold
parameter c reflects the tolerance value for full scores. In the
probability density function (Eq. (1)) except ’Code Smells’,
’Depth Inheritance Tree’, and ’Total Violations’ where c
approximates 1.

The fitted exponential decay parameter, λ, reflects the sensi-
tivity of metrics to scores. Particularly, a λ ≲ 1 is observed for
metrics such as ’File Complexity’, ’Depth Inheritance Tree’,
’Number of Children’, ’Duplicated Blocks’, and ’Duplicated
Files’, which implies a low sensitivity to metric variations
of the order of 1. Conversely, the λ value for total violation
is high, which reflects the high sensitivity of the number of
violations.

Non-monotonic metrics, such as the ’Cyclomatic Complexity’,
follow an asymmetric Gaussian distribution. According to Eq.
(4), repositories with metric values close to the Gaussian center
get higher scores since they fall into the range where high-
quality OSS are mostly located. In Table IV, the Gaussian
centers µ are large (≫ 1) for the metrics of ’Cyclomatic
Complexity’, ’Cognitive Complexity’, and ’Comment Lines’
in most cases except for the ’Comment Lines’ of the Javascript
and Typescript languages. The latter two distributions are
almost monotonic (µ = 0), potentially because these two

492

TABLE IV: Parameters of the Fitted Asymmetric Gaussian Distributions (µ, σ1, σ2)

Metric Java(µ,σ1,σ2) JavaScript(µ,σ1,σ2) Python(µ,σ1,σ2) TypeScript(µ,σ1,σ2)

Cyclomatic Complexity (155.228,50.947,40.902) (166.692,88.415,78.289) (162.321,53.497,52.789) (127.273,51.616,66.733)
Cognitive Complexity (50.870,40.120,75.664) (33.238,32.586,121.541) (170.042,33.546,0.000) (29.619,22.964,81.617)

Comment Lines (15.841,11.451,137.269) (0.007,6.575,96.312) (91.730,64.805,148.192) (0.002,9.300,72.443)
Fan-in (1.101,0.463,1.217) / / /

Fan-out (5.181,2.043,4.639) / / /
Loose Class Cohesion (0.329,0.149,0.176) / / /
Tight Class Cohesion (0.228,0.100,0.128) / / /

Coupling Between Objects (7.055,2.580,5.086) / / /

TABLE V: Parameters of the Fitted Exponential Distributions (c, λ)

Metric Java(c,λ) JavaScript(c,λ) Python(c,λ) TypeScript(c,λ)

File Complexity (0,0.485) (0,0.884) (0,0.917) (0,0.492)
Code Smells (1.123,50.731) (0.036,60.260) (0.004,37.177) (0.017,16.530)

Depth Inheritance Tree (1.003,0.502) / / /
Number of Children (0.002,0.137) / / /

Lack of Cohesion of Methods (0.053,80.004) / / /
Total Violations (1.160,54.376) (0.054,63.313) (0.004,387.551177) (0.021,18.168)

Critical Violations (0.019,9.872) (0.020,48.811) (0.007,9.443) (0.005,5.497)
Info Violations (0.019,1.934) (0.001,1.436) (0.002,1.401) (0.003,1.535)
Line to Cover (0,0.000) (0,0.000) (0,0.000) (0,0.000)

Duplicated Blocks (0,0.015) (0.001,0.021) (0,0.010) (0,0.021)
Duplicated Files (0.003,0.135) (0.001,0.203) (0,0.222) (0,0.116)
Duplicated Lines (0.439,63.284) (0.145,163.258) (0.081,124.342) (0.085, 102.796)

languages are generally easy to understand and do not require
additional command lines.

The fitted widths σ1,2 are large and have asymmetric sensi-
tivity; i.e. relatively long tails are observed on the right of
the asymmetric Gaussian distributions. For ”command line”
in Python, increasing command lines before the center point
has high sensitivity, while it becomes less sensitive after the
center point.

After obtaining metric distributions, we score the metrics of
each OSS repository based on their respective locations in the
distributions.

5.2 Importance Weights

Table VI shows the feature importance values from the GBC
model in Section 4, which we use as metric score weights in
Eq. (5) within the three dimensions: maintainability, reliability,
and functionality. The relative importance values are listed
in Table VI. We normalized the importance values for each
dimension to get relative weights within dimensions.

In the maintainability dimension, ’File Complexity’ has the
largest weight across four programming languages, followed
by ’Cognitive Complexity’ ’Cyclomatic Complexity’, and
’Code Smells’. These metrics contribute more to the main-
tainability scores. For Java repositories, all the coupling and

cohesion metrics show similar contributions ≲ 0.1, reflecting
their weak contribution to OSS adoption.

In the reliability dimension, ’Total Violations’ contributes
mostly to Java, while ’Critical Violations’ contributes mostly
to the other three languages, which suggests varying priorities
of solving violations for different languages.

In the functionality dimension, the ’Comment Lines’ metric
contributes more to Java, potentially because Java is less intu-
itive to understand, which requires code comments for better
understanding. The ’Comment Lines’ metric also contributes
significantly to the other three scripting languages. We note
that zero ’Line to Cover’ metric values were obtained in our
raw data, either caused by problems in obtaining this metric
or because codes in OSS repositories are rarely tested. This
gap can be closed when applying our methodology in specific
companies where values of ’Line to Cover’ are obtained for
their close-source repositories.

5.3 Software Adoption

We present the overall scores of included OSS repositories
in Fig. 4 and assess the explanatory power of our metric
scores on the OSS stars using Table VII. We observe that
Java code metric scores show higher explanatory power for the
OSS repository’s stars compared to the other languages, which
suggests that code quality can better determine the success of

493

TABLE VI: Importance Values for Metric Scores

Dimension Metric Importance
Java JavaScript Python TypeScript

Maintainability

Cyclomatic Complexity 0.110 (0.083) 0.190 (0.082) 0.250 (0.120) 0.223 (0.081)
File Complexity 0.220 (0.165) 0.396 (0.171) 0.449 (0.215) 0.402 (0.146)
Cognitive Complexity 0.086 (0.065) 0.289 (0.125) 0.119 (0.057) 0.215 (0.078)
Code Smells 0.066 (0.049) 0.125 (0.054) 0.182 (0.087) 0.160 (0.058)
Coupling Between Objects 0.096 (0.072) / / /
Fan-in 0.108 (0.081) / / /
Fan-out 0.057 (0.043) / / /
Depth Inheritance Tree 0.075 (0.057) / / /
Number of Children 0.026 (0.020) / / /
Lack of Cohesion of Methods 0.078 (0.058) / / /
Tight Class Cohesion 0.010 (0.008) / / /
Loose Class Cohesion 0.068 (0.051) / / /
Sum 1 (0.752) 1 (0.432) 1 (0.479) 1 (0.363)

Reliability
Total Violations 0.474 (0.056) 0.288 (0.070) 0.293 (0.068) 0.228 (0.065)
Critical Violations 0.272 (0.032) 0.420 (0.102) 0.410 (0.095) 0.414(0.118)
Info Violations 0.254 (0.030) 0.292 (0.071) 0.297 (0.069) 0.358 (0.102)
Sum 1 (0.118) 1 (0.243) 1 (0.232) 1 (0.285)

Functionality

Line to Cover 0.000 (0.000) 0.000 (0.000) 0.000 (0.000) 0.000 (0.000)
Comment Lines 0.454 (0.059) 0.317 (0.103) 0.370 (0.107) 0.318 (0.112)
Duplicated Blocks 0.162 (0.021) 0.286 (0.093) 0.197 (0.057) 0.148 (0.052)
Duplicated Files 0.190 (0.025) 0.120 (0.039) 0.166 (0.048) 0.179 (0.063)
Duplicated Lines 0.194 (0.025) 0.277 (0.090) 0.267 (0.077) 0.355 (0.125)
Sum 1 (0.130) 1 (0.325) 1 (0.289) 1 (0.352)

The parenthesis values are original importance values, while the values outside parenthesis are normalized in the dimension
level.

TABLE VII: Metric Scores Explanatory Power

Language Java JavaScript Python TypeScript

Accuracy 0.947 0.826 0.808 0.817
Precision 0.971 0.838 0.831 0.834

Recall 0.917 0.803 0.771 0.784
F1 0.943 0.820 0.800 0.808

AUC ROC 0.946 0.826 0.815 0.817
R2 0.787 0.274 0.186 0.247

Java-based OSS repositories in terms of stars received, which
may be attributed to the greater availability of metrics for Java
or the nature of repositories developed using Java for large-
scale platforms and systems.

In contrast, JavaScript, Python, and TypeScript exhibit rela-
tively lower explanatory power of metric scores, indicating
their code quality might be less critical in determining their
OSS adoption, possibly because of their primary use in data
analytics or other domains where their adoption is less influ-
enced by code quality.

6. CONCLUSION

Our research focuses on code quality with three dimensions:
maintainability, reliability, and functionality. We evaluate met-

rics based on their distributions. Our study advances the
understanding of code quality and contributes to better quality
control standards and practices, ultimately supporting the
success and sustainability of software.

Although our study provides valuable implications, it has
some limitations that need to be acknowledged. We have not
yet systematically validated the effectiveness of the method.
Moving forward, it would be beneficial to incorporate val-
idation techniques, such as sensitivity tests, to ensure the
accuracy and reliability of the distribution fitting. Additionally,
the parameters of the fitted distribution are sensitive to data
distribution, making it necessary to incorporate more data for
determining them.

ACKNOWLEDGMENT

Y. Xia is partly supported by the ”Pioneering Innovator” award
from the Guangzhou Tianhe District government. Z. Li is
partly supported by the Guangdong Basic and Applied Basic
Research Foundation (2021A1515012039). We would like to
acknowledge useful discussions and support from Mianmian
Zhang and other colleagues at the HSBC Lab.

494

Figure 4: Overall Scores for Four Languages

REFERENCES

[1] Sang-Yong Tom Lee, Hee-Woong Kim, and Sumeet
Gupta. Measuring open source software success. Omega,
37(2):426–438, 2009.

[2] Sunder Kekre, Mayuram S Krishnan, and Kannan Srini-
vasan. Drivers of customer satisfaction for software
products: implications for design and service support.
Management Science, 41(9):1456–1470, 1995.

[3] Kevin Crowston, Hala Annabi, and James Howison.
Defining open source software project success. In 2003
International Conference on Information Systems (ICIS)
Proceedings, 2003.

[4] David I Levine and Michael W Toffel. Quality man-
agement and job quality: How the ISO 9001 standard
for quality management systems affects employees and
employers. Management Science, 56(6):978–996, 2010.

[5] Caitlin Sadowski, Emma Söderberg, Luke Church,
Michal Sipko, and Alberto Bacchelli. Modern code
review: a case study at google. In Proceedings
of the 40th International Conference on Software
Engineering: Software Engineering in Practice, pages
181–190, Gothenburg Sweden, 2018. ACM.

[6] Poonacha K Medappa and Shirish C Srivastava. Does
superposition influence the success of FLOSS projects?
An examination of open-source software development
by organizations and individuals. Information Systems
Research, 30(3):764–786, 2019.

[7] Thomas J McCabe. A complexity measure. IEEE
Transactions on software Engineering, 0(4):308–320,

1976.
[8] Ioannis Stamelos, Lefteris Angelis, Apostolos

Oikonomou, and Georgios L. Bleris. Code quality
analysis in open source software development.
Information Systems Journal, 12(1):43–60, 2002.

[9] Yonghee Shin, Andrew Meneely, Laurie Williams, and
Jason A Osborne. Evaluating complexity, code churn,
and developer activity metrics as indicators of soft-
ware vulnerabilities. IEEE Transactions on Software
Engineering, 37(6):772–787, 2010.

[10] Jan Ljungberg. Open source movements as a model for
organising. European Journal of Information Systems,
9(4):208–216, 2000.

[11] Georg Von Krogh and Eric Von Hippel. The promise of
research on open source software. Management Science,
52(7):975–983, 2006.

[12] Sheen S Levine and Michael J Prietula. Open col-
laboration for innovation: Principles and performance.
Organization Science, 25(5):1414–1433, 2014.

[13] Padmal Vitharana, Julie King, and Helena Shih Chap-
man. Impact of internal open source development
on reuse: Participatory reuse in action. Journal of
Management Information Systems, 27(2):277–304, 2010.

[14] Vineet Kumar, Brett R Gordon, and Kannan Srini-
vasan. Competitive strategy for open source software.
Marketing Science, 30(6):1066–1078, 2011.

[15] Amit Mehra, Rajiv Dewan, and Marshall Freimer. Firms
as incubators of open-source software. Information
Systems Research, 22(1):22–38, 2011.

[16] Donald E Harter, Mayuram S Krishnan, and Sandra A

495

Slaughter. Effects of process maturity on quality, cy-
cle time, and effort in software product development.
Management Science, 46(4):451–466, 2000.

[17] Stefan Haefliger, Georg Von Krogh, and Sebastian
Spaeth. Code reuse in open source software.
Management Science, 54(1):180–193, 2008.

[18] Manuel Sojer and Joachim Henkel. Code reuse in open
source software development: Quantitative evidence,
drivers, and impediments. Journal of the Association for
Information Systems, 11(12):868–901, 2010.

[19] Jehad Al Dallal and Anas Abdin. Empirical evalua-
tion of the impact of object-oriented code refactoring
on quality attributes: A systematic literature review.
IEEE Transactions on Software Engineering, 44(1):44–
69, 2017.

[20] David Fitoussi and Vijay Gurbaxani. IT outsourcing
contracts and performance measurement. Information
Systems Research, 23(1):129–143, 2012.

[21] Si Yuan Jin and Yong Xia. CEV Framework: A central
bank digital currency evaluation and verification frame-
work with a focus on consensus algorithms and operating
architectures. IEEE Access, 10:63698–63714, 2022.

[22] Stephan Diederich, Alfred Benedikt Brendel, Stefan
Morana, and Lutz Kolbe. On the design of and interaction
with conversational agents: An organizing and assessing
review of human-computer interaction research. Journal
of the Association for Information Systems, 23(1):96–
138, 2022.

[23] Shannon W Anderson and Amanda Kimball. Evidence
for the feedback role of performance measurement sys-
tems. Management Science, 65(9):4385–4406, 2019.

[24] Greta L Polites, Nicholas Roberts, and Jason Thatcher.
Conceptualizing models using multidimensional con-
structs: a review and guidelines for their use. European
Journal of Information Systems, 21:22–48, 2012.

[25] Ronan Fitzpatrick. Software quality: definitions and
strategic issues. Report, 1, 1996.

[26] Matej Klima, Miroslav Bures, Karel Frajtak, Vaclav
Rechtberger, Michal Trnka, Xavier Bellekens, Tomas
Cerny, and Bestoun S Ahmed. Selected code-quality
characteristics and metrics for internet of things systems.
IEEE Access, 10:46144–46161, 2022.

[27] Dimitrios Athanasiou, Ariadi Nugroho, Joost Visser, and
Andy Zaidman. Test code quality and its relation to issue
handling performance. IEEE Transactions on Software
Engineering, 40(11):1100–1125, 2014.

[28] Simona Motogna, Andreea Vescan, and Camelia Şerban.
Empirical investigation in embedded systems: Quality
attributes in general, maintainability in particular. Journal
of Systems and Software, 201:111678, 2023.

[29] Ángel González-Prieto, Jorge Perez, Jessica Diaz, and
Daniel López-Fernández. Reliability in software engi-
neering qualitative research through inter-coder agree-
ment. Journal of Systems and Software, 202:111707,
2023.

[30] Qi Shen, Shijun Wu, Yanzhen Zou, Zixiao Zhu, and Bing

Xie. From api to nli: A new interface for library reuse.
Journal of Systems and Software, 169:110728, 2020.

[31] Ignatios Deligiannis, Martin Shepperd, Manos Roumeli-
otis, and Ioannis Stamelos. An empirical investigation
of an object-oriented design heuristic for maintainability.
Journal of Systems and Software, 65(2):127–139, 2003.

[32] Likoebe M Maruping, Sherae L Daniel, and Marcelo
Cataldo. Developer centrality and the impact of value
congruence and incongruence on commitment and code
contribution activity in open source software communi-
ties. MIS Quarterly, 43(3):951–976, 2019.

[33] Maha Shaikh and Emmanuelle Vaast. Folding and
unfolding: Balancing openness and transparency in open
source communities. Information Systems Research,
27(4):813–833, 2016.

[34] John Qi Dong and Sebastian Johannes Götz. Project lead-
ers as boundary spanners in open source software devel-
opment: A resource dependence perspective. Information
Systems Journal, 31(5):672–694, 2021.

496

